Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway.

نویسندگان

  • Guoheng Xu
  • Carole Sztalryd
  • Xinyue Lu
  • John T Tansey
  • Jaiwei Gan
  • Heidi Dorward
  • Alan R Kimmel
  • Constantine Londos
چکیده

Adipose differentiation-related protein (ADRP) is localized to lipid droplets in most mammalian cells. ADRP, proposed to regulate fatty acid mobilization and lipid droplet formation, is linked to lipid accumulation in foam cells of human atherosclerotic lesions. In this report, we show that ADRP protein accumulates in Chinese hamster ovary fibroblastic cells cultured in the presence of oleic acid but is destabilized when fatty acid sources are removed from culture serum. The latter effect was blocked by the proteasome inhibitor MG132, whereas inhibitors of other proteolytic processes were ineffective. Pulse-chase experiments confirmed that ADRP degradation is inhibited by MG132. Conditions that stimulate ADRP degradation also promoted the covalent modification of ADRP by ubiquitin, whereas the addition of oleic acid to culture media, which promotes triacylglycerol deposition, blunted the appearance of ubiquitinated-ADRP. Treatment with MG132 increased the levels of ADRP associated with lipid droplets, as well as throughout the cytosol. Finally, we demonstrate that the disappearance of ADRP protein after the onset of perilipin expression during adipocyte differentiation is due to degradation by proteasomes Thus, proteolytic degradation of ADRP mediated through the ubiquitin/proteasome pathway appears to be a major mode for the post-translational regulation of ADRP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Cidea protein stability by the ubiquitin-mediated proteasomal degradation pathway.

Cidea, one of three members of the CIDE (cell-death-inducing DNA-fragmentation-factor-45-like effector) family of proteins, is highly enriched in brown adipose tissue, in which it plays a critical role in adaptive thermogenesis and fat accumulation. Cidea-null mice have increased energy expenditure with resistance to high-fat-diet-induced obesity and diabetes. However, little is known as to how...

متن کامل

APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway

The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1...

متن کامل

Translational and post-translational regulation of mouse cation transport regulator homolog 1

Cation transport regulator homolog 1 (Chac1) is an endoplasmic reticulum (ER) stress inducible gene that has a function as a γ-glutamyl cyclotransferase involved in the degradation of glutathione. To characterize the translation and stability of Chac1, we found that the Kozak-like sequence present in the 5' untranslated region (5'UTR) of the Chac1 mRNA was responsible for Chac1 translation. In ...

متن کامل

Degradation of the inducible cAMP early repressor (ICER) by the ubiquitin-proteasome pathway.

The inducible cAMP early repressor (ICER) is a powerful transcriptional inhibitor that plays an important role in the regulation of the cAMP-dependent transcriptional response in the neuroendocrine system. ICER activity is primarily determined by its intracellular concentration, rather than by post-translational modifications, such as phosphorylation. We investigated the mechanisms that regulat...

متن کامل

Destabilization of Krüppel-like factor 4 protein in response to serum stimulation involves the ubiquitin-proteasome pathway.

Although the zinc finger transcription factor Krüppel-like factor 4 (KLF4) has been shown to be a negative regulator of cell proliferation, the mechanisms underlying the posttranslational modification of KLF4, especially at the level of protein degradation, are poorly understood. Here, we show that KLF4 protein levels in quiescent cells were high, but decreased rapidly as cells entered the prol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 52  شماره 

صفحات  -

تاریخ انتشار 2005